
PyQt for Desktop and Embedded Devices

David Boddie
<david.boddie@nokia.com>

PyCon Tre, Firenze, 8th–10th May 2009

• Not just a widget toolkit – other features

About Qt

• Also available under a Commercial License

 • Linux, Windows, Mac OS X, other Unixes

• Available under the GPL (version 3)

• Cross-platform C++ framework

• Available under the LGPL (version 2·1)

• Developed by Qt Software (Nokia)

 • Embedded Linux, Windows CE, Series 60

• Also available under a Commercial License
• Available under the GPL (version 2 and 3)

• Developed by Riverbank Computing Ltd.

• Includes most features of Qt

About PyQt

• Set of Python bindings to Qt

• Bindings are generated using SIP
 • Upcoming PyQt 4.5 will support Python 3

QtGuiQtDesigner

QtHelp

QtCore

QtOpenGL

QtScript QtSql QtSvg

QtNetwork

QtWebKit QtXmlPatterns Phonon

PyQt exposes many of Qt's 21 modules.

PyQt Modules

We'll take a quick look at these:

QtGuiQtDesigner

QtHelp

QtCore

QtOpenGL

QtScript QtSql QtSvg

QtNetwork

QtWebKit QtXmlPatterns Phonon

PyQt exposes many of Qt's 21 modules.

PyQt Modules

We'll take a quick look at these:

import sys
from PyQt4.QtGui import *

app = QApplication(sys.argv)

checkBox = QCheckBox("C&ase sensitive")
checkBox.show()

pushButton = QPushButton("Cancel")
pushButton.show()

calendar = QCalendarWidget()
calendar.show()

sys.exit(app.exec_())

Graphical User Interfaces

QComboBox

PyQt includes a comprehensive set of widgets:

QSpinBox

QPushButton QSlider QRadioButton

QCheckBox

QCalendarWidget QTableWidget QTextEdit

import sys
from PyQt4.QtGui import *

app = QApplication(sys.argv)

checkBox = QCheckBox("C&ase sensitive")
checkBox.show()

pushButton = QPushButton("Cancel")
pushButton.show()

calendar = QCalendarWidget()
calendar.show()

sys.exit(app.exec_())

Graphical User Interfaces

QComboBox

PyQt includes a comprehensive set of widgets:

QSpinBox

QPushButton QSlider QRadioButton

QCheckBox

QCalendarWidget QTableWidget QTextEdit

 self.fieldCombo = QComboBox()
 self.fieldCombo.addItems(["name", "version",
 "author", "author_email", "maintainer",
 "maintainer_email", "home_page",
 "license", "summary", "description",
 "keywords", "platform", "download_url"])
 self.termsEdit = QLineEdit()

 layout = QFormLayout()
 layout.addRow(self.tr("Search &field:"),
 self.fieldCombo)
 layout.addRow(self.tr("Search &terms:"),
 self.termsEdit)

class PyPIWidget(QWidget):

 def __init__(self, parent = None):

 QWidget.__init__(self, parent)

 self.treeWidget = QTreeWidget()
 self.treeWidget.setAlternatingRowColors(True)
 self.treeWidget.setRootIsDecorated(False)
 self.treeWidget.setHeaderLabels(
 [self.tr("Name"), self.tr("Description")])

 mainLayout = QVBoxLayout()
 mainLayout.addLayout(layout)
 mainLayout.addWidget(self.treeWidget)
 self.connect(self.termsEdit, SIGNAL("returnPressed()"), self.search)

Widgets and Layouts

 self.fieldCombo = QComboBox()
 self.fieldCombo.addItems(["name", "version",
 "author", "author_email", "maintainer",
 "maintainer_email", "home_page",
 "license", "summary", "description",
 "keywords", "platform", "download_url"])
 self.termsEdit = QLineEdit()

 layout = QFormLayout()
 layout.addRow(self.tr("Search &field:"),
 self.fieldCombo)
 layout.addRow(self.tr("Search &terms:"),
 self.termsEdit)

class PyPIWidget(QWidget):

 def __init__(self, parent = None):

 QWidget.__init__(self, parent)

 self.treeWidget = QTreeWidget()
 self.treeWidget.setAlternatingRowColors(True)
 self.treeWidget.setRootIsDecorated(False)
 self.treeWidget.setHeaderLabels(
 [self.tr("Name"), self.tr("Description")])

 mainLayout = QVBoxLayout()
 mainLayout.addLayout(layout)
 mainLayout.addWidget(self.treeWidget)
 self.connect(self.termsEdit, SIGNAL("returnPressed()"), self.search)

Widgets and Layouts

 self.fieldCombo = QComboBox()
 self.fieldCombo.addItems(["name", "version",
 "author", "author_email", "maintainer",
 "maintainer_email", "home_page",
 "license", "summary", "description",
 "keywords", "platform", "download_url"])
 self.termsEdit = QLineEdit()

 layout = QFormLayout()
 layout.addRow(self.tr("Search &field:"),
 self.fieldCombo)
 layout.addRow(self.tr("Search &terms:"),
 self.termsEdit)

class PyPIWidget(QWidget):

 def __init__(self, parent = None):

 QWidget.__init__(self, parent)

 self.treeWidget = QTreeWidget()
 self.treeWidget.setAlternatingRowColors(True)
 self.treeWidget.setRootIsDecorated(False)
 self.treeWidget.setHeaderLabels(
 [self.tr("Name"), self.tr("Description")])

 mainLayout = QVBoxLayout()
 mainLayout.addLayout(layout)
 mainLayout.addWidget(self.treeWidget)
 self.connect(self.termsEdit, SIGNAL("returnPressed()"), self.search)

Widgets and Layouts

 self.fieldCombo = QComboBox()
 self.fieldCombo.addItems(["name", "version",
 "author", "author_email", "maintainer",
 "maintainer_email", "home_page",
 "license", "summary", "description",
 "keywords", "platform", "download_url"])
 self.termsEdit = QLineEdit()

 layout = QFormLayout()
 layout.addRow(self.tr("Search &field:"),
 self.fieldCombo)
 layout.addRow(self.tr("Search &terms:"),
 self.termsEdit)

class PyPIWidget(QWidget):

 def __init__(self, parent = None):

 QWidget.__init__(self, parent)

 self.treeWidget = QTreeWidget()
 self.treeWidget.setAlternatingRowColors(True)
 self.treeWidget.setRootIsDecorated(False)
 self.treeWidget.setHeaderLabels(
 [self.tr("Name"), self.tr("Description")])

 mainLayout = QVBoxLayout()
 mainLayout.addLayout(layout)
 mainLayout.addWidget(self.treeWidget)
 self.connect(self.termsEdit, SIGNAL("returnPressed()"), self.search)

Widgets and Layouts

The Graphics View framework provides a canvas:

Graphics View

• Animation

• Printing

• Interactive items (drag and drop)
• Nested items and groups

• OpenGL rendering
• Embedded widgets

 def play(self):

 if self.player.isPlaying():
 self.player.stop()
 else:
 url = QUrl(self.urlEdit.text())
 self.player.play(MediaSource(url))

class Player(QWidget):

 def __init__(self, parent = None):

 QWidget.__init__(self, parent)

 self.player = VideoPlayer(VideoCategory)

 # ...

Multimedia Support

Phonon handles audio and video:

<sun rise="2009-05-01T05:32:17" set="2009-05-01T20:23:58" />
<forecast>
 <tabular>
 <time from="2009-05-01T06:00:00" to="2009-05-01T12:00:00" period="1">
 <symbol number="2" name="Fair" />
 <precipitation value="0.0" />
 <windDirection deg="114.6" code="ESE" name="East-southeast" />
 <windSpeed mps="0.8" name="Light air" />
 <temperature unit="celcius" value="8" />
 <pressure unit="hPa" value="1022.2" />
 </time>
 ...
declare variable $url external;
(
string(doc($url)//sun/@rise),
string(doc($url)//sun/@set),

for $time in doc($url)//tabular/time
order by $time/@from
return (string($time/@from),
 string($time/symbol/@name), string($time/symbol/@number),
 string($time/temperature/@value), string($time/temperature/@unit))
)

def fetchForecast(self, place):

 url = "http://www.yr.no/place/" + \
 place + "/forecast.xml"

 b = QBuffer()
 b.setData(query_string)
 b.open(QBuffer.ReadOnly)

 query = QXmlQuery()
 query.bindVariable("url",
 QXmlItem(QVariant(url)))
 query.setQuery(b)
 b.close()

 if query.isValid():

 self.results.clear()
 query.evaluateTo(self.results)
 self.updateTable()

XML Processing

Use XPath, XQuery and XSLT to process XML:

Could be useful if combined with GPS...

<sun rise="2009-05-01T05:32:17" set="2009-05-01T20:23:58" />
<forecast>
 <tabular>
 <time from="2009-05-01T06:00:00" to="2009-05-01T12:00:00" period="1">
 <symbol number="2" name="Fair" />
 <precipitation value="0.0" />
 <windDirection deg="114.6" code="ESE" name="East-southeast" />
 <windSpeed mps="0.8" name="Light air" />
 <temperature unit="celcius" value="8" />
 <pressure unit="hPa" value="1022.2" />
 </time>
 ...
declare variable $url external;
(
string(doc($url)//sun/@rise),
string(doc($url)//sun/@set),

for $time in doc($url)//tabular/time
order by $time/@from
return (string($time/@from),
 string($time/symbol/@name), string($time/symbol/@number),
 string($time/temperature/@value), string($time/temperature/@unit))
)

def fetchForecast(self, place):

 url = "http://www.yr.no/place/" + \
 place + "/forecast.xml"

 b = QBuffer()
 b.setData(query_string)
 b.open(QBuffer.ReadOnly)

 query = QXmlQuery()
 query.bindVariable("url",
 QXmlItem(QVariant(url)))
 query.setQuery(b)
 b.close()

 if query.isValid():

 self.results.clear()
 query.evaluateTo(self.results)
 self.updateTable()

XML Processing

Use XPath, XQuery and XSLT to process XML:

Could be useful if combined with GPS...

• JavaScript, SVG, CSS, SSL, etc.

WebKit is integrated into Qt:

Web Browser Engine

• Support for in-page editing
• Python/C++ objects can be added to pages

• Web browser widget

• Support for Netscape and native Qt plugins
• Control over browser settings and history

• Client-side storage

• JavaScript, SVG, CSS, SSL, etc.

WebKit is integrated into Qt:

Web Browser Engine

• Support for in-page editing
• Python/C++ objects can be added to pages

• Web browser widget

• Support for Netscape and native Qt plugins
• Control over browser settings and history

• Client-side storage

We can also use them on embedded hardware.

Intermission

These features are nice on the desktop!

Embedded Platforms

• Different architectures
• Limited storage (≈ 128MB)
• Cut down environments

• Can be portable

• Cameras

• Accelerometers
• Touch screens

• GSM, Wi-Fi, Bluetooth
• GPS

Where is Embedded Linux used:

• Phones, media players

http://www.linuxdevices.com/

• GPS devices, Web tablets
• Set top boxes
• Routers, plug computing
• Handhelds, toys, kit computing

• Qt runs on Embedded Linux, Windows CE, Series 60
• Python runs on Embedded Linux, Windows CE, Series 60

 • Windows CE?, Series 60?

Disadvantages: Advantages:
• Small screens (≈ 240 × 320)
• Low memory (≈ 64 MB)
• Slow processors (≈ 300 MHz)• PyQt runs on Embedded Linux

Embedded Platforms

• Different architectures
• Limited storage (≈ 128MB)
• Cut down environments

• Can be portable

• Cameras

• Accelerometers
• Touch screens

• GSM, Wi-Fi, Bluetooth
• GPS

Where is Embedded Linux used:

• Phones, media players

http://www.linuxdevices.com/

• GPS devices, Web tablets
• Set top boxes
• Routers, plug computing
• Handhelds, toys, kit computing

• Qt runs on Embedded Linux, Windows CE, Series 60
• Python runs on Embedded Linux, Windows CE, Series 60

 • Windows CE?, Series 60?

Disadvantages: Advantages:
• Small screens (≈ 240 × 320)
• Low memory (≈ 64 MB)
• Slow processors (≈ 300 MHz)• PyQt runs on Embedded Linux

Embedded Platforms

• Different architectures
• Limited storage (≈ 128MB)
• Cut down environments

• Can be portable

• Cameras

• Accelerometers
• Touch screens

• GSM, Wi-Fi, Bluetooth
• GPS

Where is Embedded Linux used:

• Phones, media players

http://www.linuxdevices.com/

• GPS devices, Web tablets
• Set top boxes
• Routers, plug computing
• Handhelds, toys, kit computing

• Qt runs on Embedded Linux, Windows CE, Series 60
• Python runs on Embedded Linux, Windows CE, Series 60

 • Windows CE?, Series 60?

Disadvantages: Advantages:
• Small screens (≈ 240 × 320)
• Low memory (≈ 64 MB)
• Slow processors (≈ 300 MHz)• PyQt runs on Embedded Linux

 ...

Embedded Python

Nice things about Python (2.x):

• Portable C implementation
• Fairly small (compared to all the Qt libraries)
• Few dependencies

Not so nice things about Python (2.x):

• Annoying to cross-compile (despite a good foundation)
• Relies on a native interpreter at various points
 • Runs setup.py using the built interpreter
 • Needs a native interpreter to build a parser generator
• Package-specific checks

• Batteries included (even old ones)
 • OpenSSL, Curses, pyexpat, Tkinter

Ways to build Python for Linux Devices:

• OpenEmbedded
• Scratchbox

• Distribution packages (e.g., Debian)

• Buildroot
• Crosstool

Used to create toolchains and/or whole systems.

Ways I built Python for Linux Devices:

• Scratchbox
 • Used to try PyQt on Maemo
 • There are packages available now

 • Used to try PyQt on a Greenphone
• Crosstool• Batteries included

 ...

Embedded Python

Nice things about Python (2.x):

• Portable C implementation
• Fairly small (compared to all the Qt libraries)
• Few dependencies

Not so nice things about Python (2.x):

• Annoying to cross-compile (despite a good foundation)
• Relies on a native interpreter at various points
 • Runs setup.py using the built interpreter
 • Needs a native interpreter to build a parser generator
• Package-specific checks

• Batteries included (even old ones)
 • OpenSSL, Curses, pyexpat, Tkinter

Ways to build Python for Linux Devices:

• OpenEmbedded
• Scratchbox

• Distribution packages (e.g., Debian)

• Buildroot
• Crosstool

Used to create toolchains and/or whole systems.

Ways I built Python for Linux Devices:

• Scratchbox
 • Used to try PyQt on Maemo
 • There are packages available now

 • Used to try PyQt on a Greenphone
• Crosstool• Batteries included

 ...

Embedded Python

Nice things about Python (2.x):

• Portable C implementation
• Fairly small (compared to all the Qt libraries)
• Few dependencies

Not so nice things about Python (2.x):

• Annoying to cross-compile (despite a good foundation)
• Relies on a native interpreter at various points
 • Runs setup.py using the built interpreter
 • Needs a native interpreter to build a parser generator
• Package-specific checks

• Batteries included (even old ones)
 • OpenSSL, Curses, pyexpat, Tkinter

Ways to build Python for Linux Devices:

• OpenEmbedded
• Scratchbox

• Distribution packages (e.g., Debian)

• Buildroot
• Crosstool

Used to create toolchains and/or whole systems.

Ways I built Python for Linux Devices:

• Scratchbox
 • Used to try PyQt on Maemo
 • There are packages available now

 • Used to try PyQt on a Greenphone
• Crosstool• Batteries included

 ...

Embedded Python

Nice things about Python (2.x):

• Portable C implementation
• Fairly small (compared to all the Qt libraries)
• Few dependencies

Not so nice things about Python (2.x):

• Annoying to cross-compile (despite a good foundation)
• Relies on a native interpreter at various points
 • Runs setup.py using the built interpreter
 • Needs a native interpreter to build a parser generator
• Package-specific checks

• Batteries included (even old ones)
 • OpenSSL, Curses, pyexpat, Tkinter

Ways to build Python for Linux Devices:

• OpenEmbedded
• Scratchbox

• Distribution packages (e.g., Debian)

• Buildroot
• Crosstool

Used to create toolchains and/or whole systems.

Ways I built Python for Linux Devices:

• Scratchbox
 • Used to try PyQt on Maemo
 • There are packages available now

 • Used to try PyQt on a Greenphone
• Crosstool• Batteries included

• Care must be taken with the widgets used:

Qt and PyQt on Linux Devices

• Fairly standard procedure for building Qt and PyQt

Which graphics system to use?

X11 (Qt for X11):

• Not all that common to cross-compile Qt for X11
• Qt works better with X extensions (Render)
• Develop using PyQt for X11

QWS (Qt for Embedded Linux):
• Fairly easy to build Qt for Embedded Linux

• Qt uses the framebuffer
• PyQt needs patching for cross-compilation

Developing and Simulating

• Develop using PyQt derived from PyQt for X11

X11-based devices:
• Use Xephyr (nested X server) to simulate a small screen
• Run or simulate the device's window system

 • Beware of version differences
• Possible to use system PyQt to prototype applications
• The Maemo SDK emulates the device environment
• Need to build your own libraries for desktop and device

• Run or simulate the device's window system
• No need for a dedicated window manager

• Use a virtual framebuffer or VNC to simulate the screen
QWS-based devices:

• Obviously, look and feel may be a bit different
• The APIs should be the same

• Applications can be developed on desktops using PyQt

Common approach:

 • Scrollbars on a small screen...
 • Input widgets without a keyboard...

Xephyr -ac -extension Composite -screen 800x480 :1
DISPLAY=:1 python application.py
python application.py -qws -display VNC:0:size=240x320
vncviewer :0

• Care must be taken with the widgets used:

Qt and PyQt on Linux Devices

• Fairly standard procedure for building Qt and PyQt

Which graphics system to use?

X11 (Qt for X11):

• Not all that common to cross-compile Qt for X11
• Qt works better with X extensions (Render)
• Develop using PyQt for X11

QWS (Qt for Embedded Linux):
• Fairly easy to build Qt for Embedded Linux

• Qt uses the framebuffer
• PyQt needs patching for cross-compilation

Developing and Simulating

• Develop using PyQt derived from PyQt for X11

X11-based devices:
• Use Xephyr (nested X server) to simulate a small screen
• Run or simulate the device's window system

 • Beware of version differences
• Possible to use system PyQt to prototype applications
• The Maemo SDK emulates the device environment
• Need to build your own libraries for desktop and device

• Run or simulate the device's window system
• No need for a dedicated window manager

• Use a virtual framebuffer or VNC to simulate the screen
QWS-based devices:

• Obviously, look and feel may be a bit different
• The APIs should be the same

• Applications can be developed on desktops using PyQt

Common approach:

 • Scrollbars on a small screen...
 • Input widgets without a keyboard...

Xephyr -ac -extension Composite -screen 800x480 :1
DISPLAY=:1 python application.py
python application.py -qws -display VNC:0:size=240x320
vncviewer :0

• Care must be taken with the widgets used:

Qt and PyQt on Linux Devices

• Fairly standard procedure for building Qt and PyQt

Which graphics system to use?

X11 (Qt for X11):

• Not all that common to cross-compile Qt for X11
• Qt works better with X extensions (Render)
• Develop using PyQt for X11

QWS (Qt for Embedded Linux):
• Fairly easy to build Qt for Embedded Linux

• Qt uses the framebuffer
• PyQt needs patching for cross-compilation

Developing and Simulating

• Develop using PyQt derived from PyQt for X11

X11-based devices:
• Use Xephyr (nested X server) to simulate a small screen
• Run or simulate the device's window system

 • Beware of version differences
• Possible to use system PyQt to prototype applications
• The Maemo SDK emulates the device environment
• Need to build your own libraries for desktop and device

• Run or simulate the device's window system
• No need for a dedicated window manager

• Use a virtual framebuffer or VNC to simulate the screen
QWS-based devices:

• Obviously, look and feel may be a bit different
• The APIs should be the same

• Applications can be developed on desktops using PyQt

Common approach:

 • Scrollbars on a small screen...
 • Input widgets without a keyboard...

Xephyr -ac -extension Composite -screen 800x480 :1
DISPLAY=:1 python application.py
python application.py -qws -display VNC:0:size=240x320
vncviewer :0

• Care must be taken with the widgets used:

Qt and PyQt on Linux Devices

• Fairly standard procedure for building Qt and PyQt

Which graphics system to use?

X11 (Qt for X11):

• Not all that common to cross-compile Qt for X11
• Qt works better with X extensions (Render)
• Develop using PyQt for X11

QWS (Qt for Embedded Linux):
• Fairly easy to build Qt for Embedded Linux

• Qt uses the framebuffer
• PyQt needs patching for cross-compilation

Developing and Simulating

• Develop using PyQt derived from PyQt for X11

X11-based devices:
• Use Xephyr (nested X server) to simulate a small screen
• Run or simulate the device's window system

 • Beware of version differences
• Possible to use system PyQt to prototype applications
• The Maemo SDK emulates the device environment
• Need to build your own libraries for desktop and device

• Run or simulate the device's window system
• No need for a dedicated window manager

• Use a virtual framebuffer or VNC to simulate the screen
QWS-based devices:

• Obviously, look and feel may be a bit different
• The APIs should be the same

• Applications can be developed on desktops using PyQt

Common approach:

 • Scrollbars on a small screen...
 • Input widgets without a keyboard...

Xephyr -ac -extension Composite -screen 800x480 :1
DISPLAY=:1 python application.py
python application.py -qws -display VNC:0:size=240x320
vncviewer :0

Demonstrations

Two devices:

Screen: 800 × 480

Nokia N800:

CPU: 400 MHz OMAP2420 CPU: 312 MHz Intel PXA270
Screen: 240 × 320

Greenphone:

At this point we show some demonstrations...

Cutting Out Features

On desktops, we want as many features as possible...
...but...
...on embedded devices, we might not want everything.

Inappropriate features:
• Classic dialogs too large for small screen devices

• Specialized displays don't need all the widget styles

• Menu bars, dock windows follow the wrong paradigm

Redundant features:

Unnecessary features:
• Devices with touch screens don't need cursors

• We don't really need:
 • four sets of XML classes,
 • two JavaScript engines,

Configuring Qt for Embedded Linux:

 • two ways to access networked resourcesQConfig lets you remove features from an embedded build

Cutting Out Features

On desktops, we want as many features as possible...
...but...
...on embedded devices, we might not want everything.

Inappropriate features:
• Classic dialogs too large for small screen devices

• Specialized displays don't need all the widget styles

• Menu bars, dock windows follow the wrong paradigm

Redundant features:

Unnecessary features:
• Devices with touch screens don't need cursors

• We don't really need:
 • four sets of XML classes,
 • two JavaScript engines,

Configuring Qt for Embedded Linux:

 • two ways to access networked resourcesQConfig lets you remove features from an embedded build

Cutting Out Features

On desktops, we want as many features as possible...
...but...
...on embedded devices, we might not want everything.

Inappropriate features:
• Classic dialogs too large for small screen devices

• Specialized displays don't need all the widget styles

• Menu bars, dock windows follow the wrong paradigm

Redundant features:

Unnecessary features:
• Devices with touch screens don't need cursors

• We don't really need:
 • four sets of XML classes,
 • two JavaScript engines,

Configuring Qt for Embedded Linux:

 • two ways to access networked resourcesQConfig lets you remove features from an embedded build

• Take advantage of interactivity to prototype on devices

• Write code that works on different (embedded) platforms

 • Build on top of existing pure-Python code
• Write portable, deployable applications

 • You get to work around those at a high level
• Prototype applications on the desktop

Python makes it possible to
• Ignore problems like cross-compiling

Finishing Up

• Despite allowances for differences between devices

PyQt makes it possible to

• Take advantage of interactivity to prototype on devices

• Write code that works on different (embedded) platforms

 • Build on top of existing pure-Python code
• Write portable, deployable applications

 • You get to work around those at a high level
• Prototype applications on the desktop

Python makes it possible to
• Ignore problems like cross-compiling

Finishing Up

• Despite allowances for differences between devices

PyQt makes it possible to

http://www.qtsoftware.com/

Resources

Qt

by Mark Summerfield

PyQt
http://www.riverbankcomputing.com/

PyQt and PyKDE Wiki
http://www.diotavelli.net/PyQtWiki/

Develer
http://www.develer.com/

Rapid GUI Programming with Python and Qt

