PyQt for Desktop and Embedded Devices

David Boddie

<david.boddie(@nokia.com>

PyCon Tre, Firenze, 8"-10" May 2009

About Ot

* Developed by Qt Software (Nokia)

® Cross-platform C++ framework
e Linux, Windows, Mac OS X, other Unixes
e Embedded Linux, Windows CE, Series 60

* Not just a widget toolkit — other features

e Available under the GPL (version 3)

e Available under the LGPL (version 2-1)

e Also available under a Commercial License

About PyQt

* Developed by Riverbank Computing Ltd.
e Set of Python bindings to Ot

* Upcoming PyQt 4.5 will support Python 3
* Bindings are generated using SIP
¢ Includes most features of Qt
e Available under the GPL (version 2 and 3)
e Also available under a Commercial License

PyQt Modules

PyQt exposes many of Qt's 21 modules.

QOtCore QtDesigner OtGui
QtHelp OtNetwork QtOpenGL
QtScript QtSql QtSvg

OtWebKit OtXmlPatterns Phonon

PyQt Modules

PyQt exposes many of Qt's 21 modules.
We'll take a quick look at these:

OtGui

OtWebKit OtXmlPatterns Phonon

Graphical User Interfaces

PyQt includes a comprehensive set of widgets:

7 A
Case sensitive Large (L)v 123
QCheckBox QComboBox QSpinBox
Cancel Use existing
QPushButton QSlider ORadioButton
Torget Acal | Rich Text Editor
Sun Mon Tue Wed Thu Fri Sat 0 1 o _
18 2 27 28 29 30 1 9 ! QTextEdit is an editor that
9 3 4 5 6 7 8 9 3 3 " can be used to display rich
- o 5 5 text containing objects like
20 11 12 13 14 15 16 it
200 17 18 19 20 21 22 23 12 13
i an ® |ists
22 24 25 26 27 28 29 30
3 3 . . . : 1 15 =z ¢ frames

éCaleI{dafWidgét | QTableWidget QTextEdit

1>

<o

Graphical User Interfaces

PyQt includes a comprehensive set of widgets:

Case sensitive

QCheckBox
Cancel
QPushButton
+ May, 2009 +
Sun Mon Tue Wed Thu Fri Sat
18 26 27 28 29 30 1 e,
19 3 4 5 6 7 8 9
20 o 11 12 13 14 15 16
21 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30
2el 31 5 [

QCalendarWidget

import sys
from PyQt4.QtGui import *

app = QOApplication(sys.argv)

checkBox = QCheckBox ("C&ase sensitive")
checkBox.show ()

pushButton = QPushButton ("Cancel")
pushButton. show ()

calendar = QCalendarWidget ()
calendar. show ()

sys.exit (app.exec_())

Widgets and Layouts

class PyPIWidget (QWidget) :
def (self, parent = None):
QOWidget. (self, parent)

Widgets and Layouts

class PyPIWidget (QWidget) :
def @ init_ (self, parent = None):

OWidget. init_ (self, parent)

self.fieldCombo = QComboBox () Search field: name
self.fieldCombo.addItems (["name", "version", o
"author", "author_email", "maintainer", -
"maintainer_email", "home_page",
"license", "summary", "description",

"keywords", "platform", "download_url"])
self.termsEdit = QLineEdit ()

layout = QFormLayout ()

layout .addRow (self.tr ("Search &field:"),
self.fieldCombo)

layout .addRow (self.tr ("Search &terms:"),
self.termskEdit)

Widgets and Layouts

class PyPIWidget (QWidget) :

def @ init_ (self, parent = None):

OWidget. init_ (self, parent)

self.fieldCombo = QComboBox ()
self.fieldCombo.addItems (["name", "version",
"author", "author_email", "maintainer",
"maintainer_email", "home_page",
"license", "summary", "description",
"keywords", "platform", "download_url"])
self.termsEdit = QLineEdit ()

layout = QFormLayout ()

layout .addRow (self.tr ("Search &field:"),
self.fieldCombo)

layout .addRow (self.tr ("Search &terms:"),
self.termskEdit)

self . treeWidget = QTreeWidget ()

self.treeWidget.setAlternatingRowColors (True)

self.treeWidget.setRootIsDecorated (False)
self . treeWidget.setHeaderLabels (

[self.tr("Name"), self.tr("Description")])

mainLayout = QVBoxLayout ()
mainLayout .addLayout (layout)
mainLayout .addWidget (self.treeWidget)

Search field:

Search terms:

Name

name

Description

class PyPIWidget (QWidget) :
def @ init_ (self, parent

Widgets and Layouts

= None) :

OWidget. init_ (self, parent)

self.fieldCombo = QComboBox ()
self.fieldCombo.addItems (["name", "version",
"author", "author_email", "maintainer",

"maintainer email",

"home_page",

"license", "summary", "description",
"keywords", "platform", "download_url"])
self.termsEdit = QLineEdit ()

layout = QFormLayout ()

layout .addRow (self.tr ("Search &field:"),
self.fieldCombo)

layout .addRow (self.tr ("Search &terms:"),
self.termskEdit)

self . treeWidget = QTreeWidget ()

self.treeWidget.setAlternatingRowColors (True)

self.treeWidget.setRootIsDecorated (False)

self . treeWidget.setHeaderLabels (
[self.tr("Name"), self.tr("Description")])

mainLayout = QVBoxLayout ()
mainLayout .addLayout (layout)
mainLayout .addWidget (self.treeWidget)

self.connect (self.termsEdit, SIGNAL ("returnPressed()"), self.search)

Search field:

Search terms:

Name

name

Description

Graphics View

The Graphics View framework provides a canvas:

* Interactive items (drag and drop)
* Nested items and groups

* Animation

* OpenGL rendering

* Embedded widgets

* Printing

Multimedia Support

Phonon handles audio and video:

class Player (QWidget) :
def (self, parent = None):
OWidget. (self, parent)
self.player = VideoPlayer (VideoCategory)
o

def play (self):

Location: Play/Stop if self.player.isPlaying():
self.player.stop ()
else:
url = QUrl (self.urlEdit.text ())
self.player.play (MediaSource (url))

XML Processing

Use XPath, XQuery and XSLT to process XML:

<sun rise="2009-05-01T05:32:17" set="2009-05-01T20:23:58" />

<forecast>

<tabular>
<time from="2009-05-01T06:00:00" to="2009-05-01T12:00:00" period="1">

<symbol number="2" name="Fair" />
<precipitation value="0.0" />
<windDirection deg="114.6" code="ESE" name="East-southeast" />
<windSpeed mps="0.8" name="Light air" />
<temperature unit="celcius" value="8" />
<pressure unit="hPa" value="1022.2" />
</time>

declare variable $url external;
(

string(doc ($url) //sun/QRQrise),
string(doc ($url) //sun/@set),

for $time in doc($url)//tabular/time
order by $time/@from
return (string($time/@from),
string($time/symbol/@name), string($time/symbol/@number),
string ($time/temperature/@value), string($time/temperature/Qunit))

XML Processing

Use XPath, XQuery and XSLT to process XML:

def fetchForecast (self, place):

url = "http://www.yr.no/place/" + \

Place: ' ' v
E Italia/Toscana/Firenze place + "/forecast.xml"

Forecast: Only toda
. = . b = QBuffer ()
g;:_?}%ay X Partly cloudy :(9: D b.setData (query_string)
: b.open (QBuffer .ReadOnly)
Monday B 13
05:00 °C query = QXmlQuery ()
Monday 23 query.bindVariable ("url",
11:00 =Hn °C OXmlItem(QVariant (url)))
Fa)
hAnndo] 25 BV query. setQuery (b)
<l <>
Weather forecast from yr.no, delivered by b.close()
the Norwegian Meteorological Institute and if query.isValid():
the NRK

self.results.clear()
query.evaluateTo (self.results)
self.updateTable ()

Could be useful if combined with GPS...

Web Browser Engine

WebKit is integrated into Ot:

e Web browser widget

e JavaScript, SVG, CSS, SSL, etc.

* Control over browser settings and history

* Support for Netscape and native Qt plugins
e Client-side storage

e Support for in-page editing

e Python/C++ objects can be added to pages

Web Browser Engine

WebKit is integrated into Ot:

Gt WebKit Integration Home - All Namespaces - All Classes - Main Classes - Grouped Classes - Modules -

Functions
Performance |mprovements
Mac OS X Cocoa Support
Windows CE Feature Parity What's New in Qt 4.5
XML Transformations with x...
Ct Script Debugger Qt 4 5 provides many improvements and enhancements over the previous releases in the Qt 4 series. This document covers the
OpenDocument File Format ... mast important features in this release, separated by category.

lmpmw?d Network Proxy Su... Acomprenensive list of changes between Qt4 4 and Qt4 .5 s included in the changes-4.5.0 file available online. & list of known
Lt Designer Improvements issues for this release is also available.
Gt Linguist Improvements

Graphics Enhancements Changes between this release and the previous release are provided in the changes-4.5.1 file (also available onling).

Alist of other Qt 4 features can be found on the What's New in Qt 4 page.
Highlights

QtWebkit Integration
Perfarmance Improvements

Mac OS X Cocoa Support
Windows CE Feature Parity

AML Transformations with XSLT
Qt Script Debugger
OpenDocument File Format Support
Improved Network Proxy Support
Qt Designer Improvements

Qt Linguist Improvements
Graphics Enhancements

® & & % & & & & & B B

Qt WebKit Integration

&) vYouTsbe - Plmp & Clock News - Ot Demo Brawser =1 @

>

£

Intermission

These features are nice on the desktop!

We can also use them on embedded hardware.

Embedded Platforms

¢ Ot runs on Embedded Linux, Windows CE, Series 60
e Python runs on Embedded Linux, Windows CE, Series 60
* PyQt runs on Embedded Linux

e Windows CE?, Series 60?

Embedded Platforms

Disadvantages:

e Small screens (= 240 x 320)

* Low memory (= 64 MB)

e Slow processors (= 300 MHz)
e Different architectures

e Limited storage (= 128MB)

* Cut down environments

Advantages:

e Can be portable
e Accelerometers
e Touch screens

e GPS

e GSM, Wi-Fi, Bluetooth
e Cameras

Embedded Platforms

Where is Embedded Linux used:

* Phones, media players

e GPS devices, Web tablets

e Set top boxes

* Routers, plug computing
 Handhelds, toys, kit computing

http://www.linuxdevices.com/

Embedded Python

Nice things about Python (2.x):

e Portable C implementation

* Fairly small (compared to all the Qt libraries)
e Few dependencies

* Batteries included

Embedded Python

Not so nice things about Python (2.x):

* Annoying to cross-compile (despite a good foundation)
e Relies on a native interpreter at various points

* Runs setup.py using the built interpreter

* Needs a native interpreter to build a parser generator
e Package-specific checks

* OpenSSL, Curses, pyexpat, Tkinter
* Batteries included (even old ones)

Embedded Python

Ways to build Python for Linux Devices:

e OpenEmbedded

e Scratchbox

® Buildroot

* Crosstool

* Distribution packages (e.g., Debian)

Used to create toolchains and/or whole systems.

Embedded Python

Ways I built Python for Linux Devices:

e Scratchbox

e Used to try PyQt on Maemo

* There are packages available now
* Crosstool

e Used to try PyQt on a Greenphone

Qt and PyQt on Linux Devices

Which graphics system to use?

X11 (Qt for X11):

* Fairly standard procedure for building Qt and PyQt
* Not all that common to cross-compile Qt for X11

e Ot works better with X extensions (Render)

* Develop using PyQt for X11

OWS (Qt for Embedded Linux):

* Fairly easy to build Qt for Embedded Linux

* PyQt needs patching for cross-compilation

e Ot uses the framebuffer

* Develop using PyQt derived from PyQt for X11

Qt and PyQt on Linux Devices

Developing and Simulating

X11-based devices:

e Use Xephyr (nested X server) to simulate a small screen
* Run or simulate the device's window system
* The Maemo SDK emulates the device environment
* Possible to use system PyQt to prototype applications
e Beware of version differences

Xephyr —-ac —-extension Composite -screen 800x480 :1

DISPLAY=:1 python application.py

Qt and PyQt on Linux Devices

OWS-based devices:

® Use a virtual framebuffer or VNC to simulate the screen
* Run or simulate the device's window system
* No need for a dedicated window manager

* Need to build your own libraries for desktop and device

python application.py —-qws —-display VNC:0:size=240x320
vncviewer :0

Qt and PyQt on Linux Devices

Common approach:

e Applications can be developed on desktops using PyQt
e Obviously, look and feel may be a bit different
* The APIs should be the same
e Care must be taken with the widgets used:
* Input widgets without a keyboard...
* Scrollbars on a small screen...

Demonstrations

Two devices:

Nokia N800: Greenphone:

3 =) T i 1 x|

= photos.py

CPU: 400 MHz OMAP2420 CPU: 312 MHz Intel PXA270
Screen: 800 x 480 Screen: 240 x 320

At this point we show some demonstrations...

Cutting Out Features

On desktops, we want as many features as possible...
...but...
...on embedded devices, we might not want everything.

Cutting Out Features

Inappropriate features:

* Classic dialogs too large for small screen devices
* Menu bars, dock windows follow the wrong paradigm

Unnecessary features:
* Devices with touch screens don't need cursors
* Specialized displays don't need all the widget styles

Redundant features:
e We don't really need:
e four sets of XML classes,
* two JavaScript engines,
* two ways to access networked resources

Cutting Out Features

Configuring Qt for Embedded Linux:

2 QConfig - /data2/david/Software/QtEmbedded4/Working/qt-embedded-linux-opensource-src-4.5.0/src

File Tools Help
d Name *||COLORDIALOG
B Data structures
B-Dialogs - QColorDialog
[] COLORDIALOG yColorDialog
[] ERRORMESSAGE QErrorMessage Supports a dialog widget for specifying colors.
[] FONTDIALOG QOFontDialog
[] INPUTDIALOG QinputDialog Section:
El [MESSAGEBOX QMessageBox 1
FILEDIALOG JFileDialog * Dialogs
[] PRINTDIALOG '_"Fl'i"li‘__"i'.|-'-:| . ,
[] PROGRESSDIALOG QProgressDialog Requires:
[] TABDIALOG Q3TabDialog « [On] LINEEDIT
@ File /O « [Off] SPINBOX
E- Fonts » [On] VALIDATOR
- Images
- Internationalization
- ltemViews
- Kernel =
[ACTION QAction [+

QConfig lets you remove features from an embedded build

Finishing Up

PyQt makes it possible to

e Write code that works on different (embedded) platforms
* Despite allowances for differences between devices

* You get to work around those at a high level
* Prototype applications on the desktop

Finishing Up

PyQt makes it possible to

e Write code that works on different (embedded) platforms
* Despite allowances for differences between devices

* You get to work around those at a high level
* Prototype applications on the desktop

Python makes it possible to

* Ignore problems like cross-compiling
® Build on top of existing pure-Python code
e Write portable, deployable applications
e Take advantage of interactivity to prototype on devices

Resources

Ot
http://www.gtsoftware.com/

PyQt

http://www.riverbankcomputing.com/

PyQt and PyKDE Wiki
http://www.diotavelli.net/PyQtWiki/

Develer
http://www.develer.com/

Rapid GUI Programming with Python and Qt
by Mark Summerfield

