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• Not just a widget toolkit – other features

About Qt

• Also available under a Commercial License

   • Linux, Windows, Mac OS X, other Unixes

• Available under the GPL (version 3)

• Cross-platform C++ framework

• Available under the LGPL (version 2·1)

• Developed by Qt Software (Nokia)

   • Embedded Linux, Windows CE, Series 60



• Also available under a Commercial License
• Available under the GPL (version 2 and 3)

• Developed by Riverbank Computing Ltd.

• Includes most features of Qt

About PyQt

• Set of Python bindings to Qt

• Bindings are generated using SIP
   • Upcoming PyQt 4.5 will support Python 3



QtGuiQtDesigner

QtHelp

QtCore

QtOpenGL

QtScript QtSql QtSvg

QtNetwork

QtWebKit QtXmlPatterns Phonon

PyQt exposes many of Qt's 21 modules.

PyQt Modules

We'll take a quick look at these:
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import sys
from PyQt4.QtGui import *

app = QApplication(sys.argv)

checkBox = QCheckBox("C&ase sensitive")
checkBox.show()

pushButton = QPushButton("Cancel")
pushButton.show()

calendar = QCalendarWidget()
calendar.show()

sys.exit(app.exec_())

Graphical User Interfaces

QComboBox

PyQt includes a comprehensive set of widgets:

QSpinBox

QPushButton QSlider QRadioButton

QCheckBox

QCalendarWidget QTableWidget QTextEdit
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    self.fieldCombo = QComboBox()
    self.fieldCombo.addItems(["name", "version",
        "author", "author_email", "maintainer",
        "maintainer_email", "home_page",
        "license", "summary", "description",
        "keywords", "platform", "download_url"])
    self.termsEdit = QLineEdit()
    

    layout = QFormLayout()
    layout.addRow(self.tr("Search &field:"),
                  self.fieldCombo)
    layout.addRow(self.tr("Search &terms:"),
                  self.termsEdit)

class PyPIWidget(QWidget):
  

  def __init__(self, parent = None):
  

    QWidget.__init__(self, parent)

    self.treeWidget = QTreeWidget()
    self.treeWidget.setAlternatingRowColors(True)
    self.treeWidget.setRootIsDecorated(False)
    self.treeWidget.setHeaderLabels(
        [self.tr("Name"), self.tr("Description")])
    

    mainLayout = QVBoxLayout()
    mainLayout.addLayout(layout)
    mainLayout.addWidget(self.treeWidget)
    self.connect(self.termsEdit, SIGNAL("returnPressed()"), self.search)

Widgets and Layouts
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The Graphics View framework provides a canvas:

Graphics View

• Animation

• Printing

• Interactive items (drag and drop)
• Nested items and groups

• OpenGL rendering
• Embedded widgets



  def play(self):
  

    if self.player.isPlaying():
        self.player.stop()
    else:
        url = QUrl(self.urlEdit.text())
        self.player.play(MediaSource(url))

class Player(QWidget):
  

  def __init__(self, parent = None):
  

    QWidget.__init__(self, parent)
    

    self.player = VideoPlayer(VideoCategory)
    

    # ...

Multimedia Support

Phonon handles audio and video:



<sun rise="2009-05-01T05:32:17" set="2009-05-01T20:23:58" />
<forecast>
  <tabular>
    <time from="2009-05-01T06:00:00" to="2009-05-01T12:00:00" period="1">
      <symbol number="2" name="Fair" />
      <precipitation value="0.0" />
      <windDirection deg="114.6" code="ESE" name="East-southeast" />
      <windSpeed mps="0.8" name="Light air" />
      <temperature unit="celcius" value="8" />
      <pressure unit="hPa" value="1022.2" />
    </time>
    ...
declare variable $url external;
(
string(doc($url)//sun/@rise),
string(doc($url)//sun/@set),
 
for $time in doc($url)//tabular/time
order by $time/@from
return (string($time/@from),
        string($time/symbol/@name), string($time/symbol/@number),
        string($time/temperature/@value), string($time/temperature/@unit))
)

def fetchForecast(self, place):
 

  url = "http://www.yr.no/place/" + \
        place + "/forecast.xml"
  

  b = QBuffer()
  b.setData(query_string)
  b.open(QBuffer.ReadOnly)
  

  query = QXmlQuery()
  query.bindVariable("url",
                     QXmlItem(QVariant(url)))
  query.setQuery(b)
  b.close()
  

  if query.isValid():
  

      self.results.clear()
      query.evaluateTo(self.results)
      self.updateTable()

XML Processing

Use XPath, XQuery and XSLT to process XML:

Could be useful if combined with GPS...
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• JavaScript, SVG, CSS, SSL, etc.

WebKit is integrated into Qt:

Web Browser Engine

• Support for in-page editing
• Python/C++ objects can be added to pages

• Web browser widget

• Support for Netscape and native Qt plugins
• Control over browser settings and history

• Client-side storage
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We can also use them on embedded hardware.

Intermission

These features are nice on the desktop!



Embedded Platforms

• Different architectures
• Limited storage (≈ 128MB)
• Cut down environments

• Can be portable

• Cameras

• Accelerometers
• Touch screens

• GSM, Wi-Fi, Bluetooth
• GPS

Where is Embedded Linux used:

• Phones, media players

http://www.linuxdevices.com/

• GPS devices, Web tablets
• Set top boxes
• Routers, plug computing
• Handhelds, toys, kit computing

• Qt runs on Embedded Linux, Windows CE, Series 60
• Python runs on Embedded Linux, Windows CE, Series 60

   • Windows CE?, Series 60?

Disadvantages: Advantages:
• Small screens (≈ 240 × 320)
• Low memory (≈ 64 MB)
• Slow processors (≈ 300 MHz)• PyQt runs on Embedded Linux
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   ...

Embedded Python

Nice things about Python (2.x):

• Portable C implementation
• Fairly small (compared to all the Qt libraries)
• Few dependencies

Not so nice things about Python (2.x):

• Annoying to cross-compile (despite a good foundation)
• Relies on a native interpreter at various points
   • Runs setup.py using the built interpreter
   • Needs a native interpreter to build a parser generator
• Package-specific checks

• Batteries included (even old ones)
   • OpenSSL, Curses, pyexpat, Tkinter

Ways to build Python for Linux Devices:

• OpenEmbedded
• Scratchbox

• Distribution packages (e.g., Debian)

• Buildroot
• Crosstool

Used to create toolchains and/or whole systems.

Ways I built Python for Linux Devices:

• Scratchbox
   • Used to try PyQt on Maemo
   • There are packages available now

   • Used to try PyQt on a Greenphone
• Crosstool• Batteries included
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• Care must be taken with the widgets used:

Qt and PyQt on Linux Devices

• Fairly standard procedure for building Qt and PyQt

Which graphics system to use?

X11 (Qt for X11):

• Not all that common to cross-compile Qt for X11
• Qt works better with X extensions (Render)
• Develop using PyQt for X11
 
QWS (Qt for Embedded Linux):
• Fairly easy to build Qt for Embedded Linux

• Qt uses the framebuffer
• PyQt needs patching for cross-compilation

Developing and Simulating

• Develop using PyQt derived from PyQt for X11

X11-based devices:
• Use Xephyr (nested X server) to simulate a small screen
• Run or simulate the device's window system

    • Beware of version differences
• Possible to use system PyQt to prototype applications
• The Maemo SDK emulates the device environment
• Need to build your own libraries for desktop and device

• Run or simulate the device's window system
• No need for a dedicated window manager

• Use a virtual framebuffer or VNC to simulate the screen
QWS-based devices:

• Obviously, look and feel may be a bit different
• The APIs should be the same

• Applications can be developed on desktops using PyQt

Common approach:

   • Scrollbars on a small screen...
   • Input widgets without a keyboard...

Xephyr -ac -extension Composite -screen 800x480 :1
DISPLAY=:1 python application.py
python application.py -qws -display VNC:0:size=240x320
vncviewer :0
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Demonstrations

Two devices:

Screen: 800 × 480

Nokia N800:

CPU: 400 MHz OMAP2420 CPU: 312 MHz Intel PXA270
Screen: 240 × 320

Greenphone:



At this point we show some demonstrations...



Cutting Out Features

On desktops, we want as many features as possible...
...but...
...on embedded devices, we might not want everything.

Inappropriate features:
• Classic dialogs too large for small screen devices

• Specialized displays don't need all the widget styles

• Menu bars, dock windows follow the wrong paradigm

Redundant features:

Unnecessary features:
• Devices with touch screens don't need cursors

• We don't really need:
   • four sets of XML classes,
   • two JavaScript engines,

Configuring Qt for Embedded Linux:

   • two ways to access networked resourcesQConfig lets you remove features from an embedded build
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• Take advantage of interactivity to prototype on devices

• Write code that works on different (embedded) platforms

   • Build on top of existing pure-Python code
• Write portable, deployable applications

   • You get to work around those at a high level
• Prototype applications on the desktop

Python makes it possible to
• Ignore problems like cross-compiling

Finishing Up

• Despite allowances for differences between devices

PyQt makes it possible to
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http://www.qtsoftware.com/

Resources

Qt

by Mark Summerfield

PyQt
http://www.riverbankcomputing.com/

PyQt and PyKDE Wiki
http://www.diotavelli.net/PyQtWiki/

Develer
http://www.develer.com/

Rapid GUI Programming with Python and Qt


